

Abstract

A series of novel 4-(arylmethylidene)amino-5-(2-ethoxyphenyl)-3-mercapto-4H-1,2,4-triazoles (2a-f) were easily synthesized in high yields by means of the reactions of 3-(2-ethoxyphenyl)-4-amino-5-mercapto- $4 H-1,2,4$-triazole (1) with various aromatic aldehydes. The compound, 4-(4-methylbenzylidene)-amino-5-(2-ethoxyphenyl)-3-mercapto-4H-1,2,4-triazole was investigated with X-ray crystallography.

J. Heterocyclic Chem., 44, 1019 (2007).

INTRODUCTION

1,2,4-triazoles and their derivatives were reported to possess significant antibacterial, antifungal, antiviral, anticancer and antihelmintic activities [1-8]. Schiff bases and their complexes are becoming increasingly important as biochemical, analytical and antimicrobial reagents [9], and have been amongst the most widely studied coordination compounds in recent years. Further, many Schiff bases of 1,2,4-triazoles were found to possess potent activities such as herbicidal, pesticidal, plantgrowth regulating [10,11]. In particular, Schiff bases derived from triazoles are more and more interesting because of their broad spectra of biological activities. Our researches have been devoted for several years to the synthesis of a series of novel derivatives derived from 1,2,4-triazoles compounds [12-17]. However, we noticed that the crystal structure of this heterocyclic system was not reported in literature up to now. Therefore, it is planned to investigate a new system, which combines these biological components together to obtain new biological activities. Considering that ethyl 2-ethoxylbenzoate may play a special role in the body, we have synthesized several novel 4-(arylmethylidene) amino-5-(2-ethoxyphenyl)-3-mercapto- $4 H-1,2,4$ - triazoles (2a-f), which may improve their transportation and absorption in biological systems. The structures of all products have been characterized by elemental analysis, ir, ${ }^{1} \mathrm{H} \mathrm{nmr}$, and ${ }^{13} \mathrm{C} \mathrm{nmr}$. The synthetic route to the compounds is shown in Scheme 1. The compound, 4-(4-methylbenzylidene)amino-5-(2-ethoxyphenyl)-3-mercapto- $4 H$-1,2,4-triazole (2b) was investigated with X-ray crystallography.

RESULTS AND DISCUSSION

In the beginning, we applied a previously reported procedure [18] and treated the triazole 1 with the various

Scheme 1

aromatic aldehydes maintaining the pH values during the reaction at 5-6 in order to attempt to get the ring closed derivatives 3. As reported previously [18], the acidity of the reaction medium is crucial, and if it is too high or too low the ring closed derivatives $\mathbf{3}$ will not be obtained. However, we ran this reaction under the above mentioned conditions, we could only obtain the open chain hydrazones $\mathbf{2 a - f}$ by way of recrystallization. The reason may be that the acidity of the reaction medium ($\mathrm{pH}=5-6$) is too low for the dehydration necessary to obtain the ring-closed derivatives $\mathbf{3}$. The mechanism is presented in Scheme 2.

IR absorption bands of 2a-f at 3431-3447 cm^{-1} are assigned to its NH group. The $v_{\mathrm{C}=\mathrm{N}}$ absorption bands of compounds 2a-f are in the region of $1602-1620 \mathrm{~cm}^{-1}$ and

Scheme 2

the $v_{\mathrm{C}=\mathrm{S}}$ absorption bands are in the region of 1039-1264 cm^{-1}.

In the ${ }^{1} \mathrm{H} \mathrm{nmr}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra we observe the peak of the $\mathrm{N}=\mathrm{C}_{12}-\mathrm{H}$ proton at $9.79-9.10 \mathrm{ppm}$ and the corresponding carbon at about 160 ppm , which show that the synthesized products are the above mentioned open chain structure. A downfield signal appearing at 14.1613.97 ppm is attributed to the $\mathrm{N}-\mathrm{H}_{10}$ proton. A triplet at 1.1 ppm in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra and the corresponding carbon at about $14 \mathrm{ppm}{ }^{13} \mathrm{C} \mathrm{nmr}$ spectra are attributable to the $-\mathrm{C}^{1} \mathrm{H}_{3}$ group. A quartet at 3.9 ppm in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra and the corresponding carbon at about $63 \mathrm{ppm}{ }^{13} \mathrm{C}$ nmr spectra are attributable to the $-\mathrm{OC}^{2} \mathrm{H}_{2}$ - group. The
remaining protons resonated as multiplets in the aromatic region $\delta 7.0-7.8 \mathrm{ppm}$.

The crystal data and summary of data collection and structure refinement of $\mathbf{2 b}$ are given in Table 1. Selected bond lengths and angles are given in Table 2. The geometric calculations were performed using the program SHELXL-97.

In the crystal compound $\mathbf{2 b}$, the bond lengths indicate a degree of delocalization around the system which is composed by the triazole ring and $-\mathrm{N}=\mathrm{CH}$ - group, with the two $\mathrm{C}=\mathrm{N}$ bonds ranging from $1.276(3)$ to $1.301(3) \AA$ and the two $\mathrm{N}-\mathrm{N}$ bonds ranging from $1.377(3)$ to $1.408(3) \AA$. The crystal packing is stabilized by $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{N}-\mathrm{H}^{\cdots} \mathrm{S}$ intra- and intermolecular hydrogen-bonding interactions. The structure of the compound $\mathbf{2 b}$ is shown in Figure 1.

EXPERIMENTAL

All melting points were determined on an XT-4A apparatus and are uncorrected. The nmr spectra were measured on a Bruker Advance 300 spectrometer in DMSO- d_{6} solutions using TMS as internal reference. Elemental analyses were carried out with an EA 1112 elemental analyzer. The crystal structure was measured on Bruker APEX area-detector diffractometer. All the reagents used were AR grade.

Figure 1. The molecular structure of $\mathbf{2 b}$, with the atom-numbering, showing displacement ellipsoids at the 30% probability level.

Table 1	
Crystal data and summary of data collection and structure refinement	
Compound	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$
Color	Colorless
Formula weight	338.43
Crystal system, space group	Orthorhombic, P $2_{1} 2_{1} 2_{1}$
Temperature, ${ }^{\circ} \mathrm{C}$	25(298K)
Cell constants	
$\mathrm{a}(\AA)$	13.881(9)
b (Å)	8.379(5)
c (Å)	15.220(10)
$\alpha\left({ }^{\circ}\right.$	90
$\beta\left({ }^{\circ}\right.$	90
$\gamma\left({ }^{\circ}\right.$	90
Volume (\AA^{3})	1770.2(19)
Formula units	4
Calculated density ($\mathrm{Mg} / \mathrm{m}^{3}$)	1.270
F(000)	712
Absorption coefficient, mm^{-1}	0.195
Limiting indices	$-16 \leq \mathrm{h} \leq 16 ;-9 \leq \mathrm{k} \leq 9 ;-10 \leq 1 \leq 18$
Reflections collected / unique	$9178 / 3129$ (R (int) $=0.0235$)
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9466 and 0.9193
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3129/0/219
Goodness-of-fit on F^{2}	1.166
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0448, \mathrm{wR}_{2}=0.1054$
R indices (all data)	$\mathrm{R}_{1}=0.0466, \mathrm{wR}_{2}=0.1064$
Absolute structure parameter	0.04(10)
Largest diff. peak and hole (e \AA^{-3})	0.214 and -0.175

The appropriate aromatic aldehyde (1.1 mmol) was added to a solution of 4-amino-5-(4-ethoxyphenyl)-3-mercapto-1,2,4triazole ($\mathbf{1}, 236 \mathrm{mg}, 1 \mathrm{mmol}$) in ethanol (10 ml). The pH values was then adjusted to $5-6$ with diluted HCl and the mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 5 h , allowed to stand overnight and the precipitate was collected by filtration, washed with a 5% NaHCO_{3} solution (30 ml) and water and air-dried. The crude product was then recrystallized from ethanol and distilled water ($8: 2$, volume) to yield pure $\mathbf{2 a} \mathbf{- f}$.
The purified product, 4-(4-methylbenzylidene)amino-5-(2-ethoxyphenyl)-3-mercapto-4H-1,2,4-triazole (2b) was dissolved in 95% ethanol and kept at room temperature for 4 days and single crystals of $\mathbf{2 b}$ were formed.

4-(4-Chlorobenzylidene)amino-5-(2-ethoxyphenyl)-3-mercapto-4H-1,2,4-triazole(2a). yield 75%; mp 204-205 ${ }^{\circ}$; ir $\left(\mathrm{cm}^{-1}\right): 3431(\mathrm{NH}), 3042(\mathrm{ArH}), 2981\left(\mathrm{CH}_{3}\right), 2925\left(\mathrm{CH}_{2}\right), 1620$ (C=N), 1578, 1536, 1487 (Ar skeleton), 1123 (C=S); ${ }^{1} \mathrm{H} \mathrm{nmr}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}$, TMS) $\delta(\mathrm{ppm}): 14.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{C}=\mathrm{S})$, $9.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.80-7.05(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.93(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.08\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ (ppm): 163.66, 161.74, 160.47, 156.72, 148.33, 132.58, 131.33, $129.98,129.33,129.04,120.30,114.54,112.34,63.52,14.23$; Elemental anal. Calc. (\%) for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}(358.9)$: C 56.90, H 4.21, N 15.61; Found: C 56.96, H 4.11, N 15.54.

5-(2-Ethoxyphenyl)-4-(4-methylbenzylidene)amino-3-mercapto-4H-1,2,4-triazole(2b). yield 85%; mp 196-197; $\operatorname{ir}\left(\mathrm{cm}^{-1}\right): 3447(\mathrm{NH}), 3107(\mathrm{ArH}), 2982\left(\mathrm{CH}_{3}\right), 2926\left(\mathrm{CH}_{2}\right), 1605$

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{5 b}$

$\mathrm{S}(1)-\mathrm{C}(9)$	$1.693(3)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.276(3)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.384(3)$
$\mathrm{N}(4)-\mathrm{C}(10)$	$1.301(3)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.396(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.398(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.485(4)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.401(4)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.383(4)$
$\mathrm{C}(12)-\mathrm{O}(1)-\mathrm{C}(17)$	$118.8(2)$
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{N}(1)$	$127.92(19)$
$\mathrm{C}(10)-\mathrm{N}(4)-\mathrm{N}(3)$	$103.9(2)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.9(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$118.3(2)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.3(2)$

$\mathrm{O}(1)-\mathrm{C}(12)$	$1.367(3)$	$\mathrm{O}(1)-\mathrm{C}(17)$	$1.434(3)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.408(3)$	$\mathrm{N}(2)-\mathrm{C}(9)$	$1.381(3)$
$\mathrm{N}(3)-\mathrm{C}(9)$	$1.338(3)$	$\mathrm{N}(3)-\mathrm{N}(4)$	$1.377(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.510(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.392(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.383(4)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.395(3)$
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.467(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.374(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.395(4)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.398(4)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.381(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.370(5)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.479(5)$		
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{N}(2)$	$114.13(19)$	$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(10)$	$108.08(19)$
$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{N}(1)$	$122.79(18)$	$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{N}(4)$	$114.24(19)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$117.5(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.6(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.1(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.9(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	$119.2(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$122.5(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$121.9(2)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(5)$	$121.8(2)$

3-(2-Ethoxyphenyl)-4-amino-5-mercapto-4H-1,2,4-triazole (1). The key intermediate (1) was prepared from acid hydrazide, whose starting material was 2 -ethoxybenzoic acid, following the method of reference [19]. yield $63.2 \%, \mathrm{mp} 153-154^{\circ},{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6}) $\delta(\mathrm{ppm}): 13.81(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}-\mathrm{C}=\mathrm{S}), 7.55-7.02(\mathrm{~m}, 4 \mathrm{H}$, ArH), $5.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.11\left(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.27(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH} 3$); 13C nmr (DMSO-d6) δ (ppm): 165.70, 157.09, 149.23, 132.46, 131.47, 120.32, 115.17, 112.64, 64.01, 14.48.

General Method for the Preparation of 4-(Aryl methyl-idene)amino-5-(2-ethoxyphenyl)-3-mercapto-4H-1,2,4-triazoles (2a-f). Reaction of the triazole $\mathbf{1}$ and the appropriate aromatic aldehydes in absolute ethanol maintaining the pH values during the reaction at 5-6 afforded the Schiff bases 2a-f.
(C=N), 1589, 1506, 1456 (Ar skeleton), 1202 ($\mathrm{C}=\mathrm{S}$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}, \mathrm{TMS}$) $\delta(\mathrm{ppm}): 14.13$ (s, $1 \mathrm{H}, \mathrm{NH}-\mathrm{C}=\mathrm{S}$), $9.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.67-7.05(\mathrm{~m}, 8 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 3.91(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.08(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, CH_{3}); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 163.44,161.77,156.73,148.24$, 142.93, 132.71, 131.31, 129.70, 129.32, 128.39, 120.27, 114.68, 112.31, 63.50, 21.17, 14.23; Elemental anal. Calc. (\%) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}(338.4)$: C 63.88, H 5.36, N 16.56; Found: C 63.79, H 5.25, N 16.46 .

4-(Benzylidene)amino-5-(2-ethoxyphenyl)-3-mercapto-4H-1,2,4-triazole(2c). yield 86%; mp 202-203 ${ }^{\circ}$; $\operatorname{ir}\left(\mathrm{cm}^{-1}\right)$: 3445 (NH), $3091(\mathrm{ArH}), 2983\left(\mathrm{CH}_{3}\right), 2925\left(\mathrm{CH}_{2}\right), 1614(\mathrm{C}=\mathrm{N}), 1599$, 1506, 1460 (Ar skeleton), $1130(\mathrm{C}=\mathrm{S}) ;{ }^{1} \mathrm{H} \mathrm{nmr}(300 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}, 25^{\circ}, \mathrm{TMS}\right) \delta(\mathrm{ppm}): 14.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{C}=\mathrm{S}), 9.67(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}), 7.77-7.07(\mathrm{~m}, 9 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 3.92(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 1.08\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 165.20, 161.78, 156.75, 148.30, 132.73, 132.56, 132.03, 131.33, 129.09, 128.35, 120.28, 114.65, 112.34, 63.53, 14.22; Elemental anal. Calc. (\%) for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}(324.4)$: C 62.94, H 4.97, N 17.27; Found: C 62.86, H 4.81, N 17.13.

5-(4-Ethoxyphenyl)-4-(4-(N, N-dimethylamino)benzylidene)-amino-3-mercapto-4H-1,2,4-triazole(2d). yield 70%; mp 243$244^{\circ}$; ir(cm^{-1}): $3432(\mathrm{NH}), 3084(\mathrm{ArH}), 2980\left(\mathrm{CH}_{3}\right), 2919\left(\mathrm{CH}_{2}\right)$, 1612 (C=N), 1585, 1533, 1503 (Ar skeleton), 1175 (C=S); ${ }^{1} \mathrm{H}$ nmr ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}$, TMS) $\delta(\mathrm{ppm}): 13.97$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}-$ $\mathrm{C}=\mathrm{S}), 9.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.57-6.72(\mathrm{~m}, 8 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 3.91(\mathrm{q}$, $\left.2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 166.54,161.82,156.73$, 153.02, 148.05, 132.53, 131.29, 130.15, 120.20, 118.58, 114.97, 112.30, 111.46, 63.48, 40.46, 14.25, 165.33; Elemental anal. Calc. (\%) for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}$ (367.5): C 62.10, H 5.76, N 19.06; Found: C 61.91, H 5.69, N 18.95.

5-(4-Ethoxyphenyl)-4-(2-hydroxybenzylidene)amino-3-mercapto-4H-1,2,4-triazole (2e). yield 83%; mp 207-208 ${ }^{\circ}$; $\operatorname{ir}\left(\mathrm{cm}^{-1}\right)$: $3447(\mathrm{NH}), 3076(\mathrm{ArH}), 2983\left(\mathrm{CH}_{3}\right), 2926\left(\mathrm{CH}_{2}\right), 1611$ ($\mathrm{C}=\mathrm{N}$), 1558, 1516, 1460 (Ar skeleton), $1204(\mathrm{C}=\mathrm{S}) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}$, TMS) $\delta(\mathrm{ppm}): 14.10$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{C}=\mathrm{S}$), $10.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.61-6.86(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}), 3.94\left(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 1.13(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ nmr $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 162.80,161.80,158.35,156.70$, 148.14, 134.19, 132.75, 131.32, 127.71, 120.32, 119.54, 117.87, $116.57,114.59,112.29,63.60,14.12$; Elemental anal. Calc. (\%) for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ (340.4): C 59.98, H 4.74, N 16.46; Found: C 60.06, H 4.56, N 16.38.

5-(4-ethoxyphenyl)-4-(4-methoxybenzylidene)amino-3-mercapto-4H-1,2,4-triazole (2f). yield 76\%; mp 200-201; $\mathrm{ir}\left(\mathrm{cm}^{-1}\right)$: $3445(\mathrm{NH}), 3091(\mathrm{ArH}), 2983\left(\mathrm{CH}_{3}\right), 2925\left(\mathrm{CH}_{2}\right), 1602$ (C=N), 1566, 1506, 1457 (Ar skeleton), 1115 (C=S); ${ }^{1} \mathrm{H} \mathrm{nmr}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ}$, TMS) $\delta(\mathrm{ppm}$): 14.08 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{C}=\mathrm{S}$), $9.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 7.74-7.03(\mathrm{~m}, 8 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 3.91(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.09(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, CH_{3}); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 165.53,162.76,161.75,156.71$, 148.16, 132.67, 131.31, 130.38, 124.42, 120.26, 114.72, 114.60, 112.31, 63.49, 55.45, 14.23; Elemental anal. Calc. (\%) for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}(354.4)$: C 61.00, H 5.12, N 15.81 ; Found: C 60.95 , H 5.01, N 15.84 .

Acknowledgement. We are grateful for financial support from the Natural Science Foundation of Zhejiang Province, China (Project No. M203149).

REFERENCES

[1] Hardman, J.G.; Limbird, L.E.; Molinoff, P.B.; Ruddon, R.W.; Gilman, A.G. The Pharmacological Basis of Therapeutics, Goodman \& Gilman's, McGraw-Hill, New York, 1996, 988.
[2] Gennaro, A.R.; Remington. The Science and Practice of Pharmacy, Vol. II, Mack Easton, PA, 1995, 1327.
[3] Richardson, K.; Whittle, P.J. Eur. Pat. Appl., EP 115, 416, 1984; Chem. Abstr. 1984, 101, 230544p.
[4] Ammermann, E.; Loecher, F.;Lorenz, G.; Janseen, B.; Karbach, S.; Meyer, N. Brighton Crop Prot. Conf. Pests. Dis., 1990, 2, 407; Chem. Abstr. 1991, 114, 223404h.
[5] Heindel, N. D.; Reid, J. R. J. Heterocycl. Chem., 1980, 17, 1087.
[6] Papakonstantinou-Garoufalias, S.S.; Tani, E.; Todoulou, O.; Papadaki-Valiraki, A.; Filippatos, E.; De Clercq, E.; Kourounakis,P.N. J.Pharm. Pharmacol., 1998, 50, 117.
[7] Ammar, Y.A.; Ghorab, M.M.; El-Sharief, A.M.Sh.; Mohamed, Sh.I. Heteroat. Chem., 2002, 13, 199.
[8] Holla, B.S.; Veerendra, B.; Shivananda, M. K.; Poojary, B. Eur. J. Med. Chem., 2003, 38, 759.
[9] Tumer, M.; Koksal, H.; Sener, M. K.; Serin, S.; Trans. Met. Chem., 1999, 24, 414.
[10] Ergenc, N.; Ulusoy, N. Arch. Pharm. Pharm. Med.Chem., 1996, 329, 427.
[11] Finar, I. L. Organic Chemistry. 6th ed., Longman Singapore Publishers (Pte) Ltd., 1986, 130.
[12] Zhang, L. X.; Zhang, A. J.; Zhou, G. Q.; Zhang, Z. Y. Chin. J. Org. Chem., 2002, 22, 663-666.
[13] Zhang, L. X.; Zhang, A. J.; Xiong, J.; Lei, X. X.; Chen, X. H., Zhang Z. Y. Chin. J. Org. Chem., 2002, 22, 1022-1025.
[14] Xiong, Y. ; Zhang, L. X. ; Zhang, A. J. ; Xu, D. J. Synthetic Communications, 2002, 32, 3455.
[15] Ye, X. Q.; Zhang, L. X.; Zhang, A. J.; Chen, X. X.; Zhang, Z. Y. Chem. Res. Chinese U., 2002, 18, 411.
[16] Zhang, A. J.; Zhang, L. X.; Xu, D. J.; Li, X. J. Chinese Journal of Organic Chemistry, 2003, 23, 456.
[17] Zhang, L. X.; Zhang, A. J.; Hu, M. L.; Lei, X. X.; Xu, Z. X.; Zhang, Z. Y. Acta Chimica Sinica, 2003, 61, 917.
[18] Shi, H.J.; Wang, Z.Y.; Shi, H.X. Synth. Commun., 1998, 28, 3973.
[19] Reid J. R.; Heindel N. D. J. Heterocyclic Chem., 1976, 13, 925-928.

